Package: varbvs 2.6-10
varbvs: Large-Scale Bayesian Variable Selection Using Variational Methods
Fast algorithms for fitting Bayesian variable selection models and computing Bayes factors, in which the outcome (or response variable) is modeled using a linear regression or a logistic regression. The algorithms are based on the variational approximations described in "Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies" (P. Carbonetto & M. Stephens, 2012, <doi:10.1214/12-BA703>). This software has been applied to large data sets with over a million variables and thousands of samples.
Authors:
varbvs_2.6-10.tar.gz
varbvs_2.6-10.zip(r-4.5)varbvs_2.6-10.zip(r-4.4)varbvs_2.6-10.zip(r-4.3)
varbvs_2.6-10.tgz(r-4.4-x86_64)varbvs_2.6-10.tgz(r-4.4-arm64)varbvs_2.6-10.tgz(r-4.3-x86_64)varbvs_2.6-10.tgz(r-4.3-arm64)
varbvs_2.6-10.tar.gz(r-4.5-noble)varbvs_2.6-10.tar.gz(r-4.4-noble)
varbvs_2.6-10.tgz(r-4.4-emscripten)varbvs_2.6-10.tgz(r-4.3-emscripten)
varbvs.pdf |varbvs.html✨
varbvs/json (API)
# Install 'varbvs' in R: |
install.packages('varbvs', repos = c('https://pcarbo.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/pcarbo/varbvs/issues
Last updated 1 years agofrom:547e829ff3. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 13 2024 |
R-4.5-win-x86_64 | OK | Nov 13 2024 |
R-4.5-linux-x86_64 | OK | Nov 13 2024 |
R-4.4-win-x86_64 | OK | Nov 13 2024 |
R-4.4-mac-x86_64 | OK | Nov 13 2024 |
R-4.4-mac-aarch64 | OK | Nov 13 2024 |
R-4.3-win-x86_64 | OK | Nov 13 2024 |
R-4.3-mac-x86_64 | OK | Nov 13 2024 |
R-4.3-mac-aarch64 | OK | Nov 13 2024 |
Exports:bayesfactorcase.names.varbvscoef.varbvscoef.varbvsmixconfint.varbvscreddeviance.varbvsfitted.varbvslabels.varbvsnobs.varbvsnormalizelogweightsplot.varbvspredict.varbvspredict.varbvsmixprint.summary.varbvsprint.varbvsrandrandnresid.varbvsresiduals.varbvssubset.varbvssummary.varbvsvar1var1.colsvarbvsvarbvsbfvarbvsbinvarbvsbinzvarbvsindepvarbvsmixvarbvsnormvarbvsproxybfvarbvspvevariable.names.varbvs
Dependencies:deldirinterpjpeglatticelatticeExtraMASSMatrixnor1mixpngRColorBrewerRcppRcppEigen
Mapping disease risk loci using varbvs
Rendered fromcd.Rmd
usingknitr::rmarkdown
on Nov 13 2024.Last update: 2017-09-08
Started: 2017-03-24
Assessing support for gene sets in disease using varbvs
Rendered fromcytokine.Rmd
usingknitr::rmarkdown
on Nov 13 2024.Last update: 2017-09-08
Started: 2017-03-24
Mapping QTLs in outbred mice using varbvs
Rendered fromcfw.Rmd
usingknitr::rmarkdown
on Nov 13 2024.Last update: 2019-03-07
Started: 2017-03-24
Comparison of glmnet and varbvs in Leukemia data set
Rendered fromleukemia.Rmd
usingknitr::rmarkdown
on Nov 13 2024.Last update: 2019-03-07
Started: 2017-03-24